CP-SAT is a discrete optimization solver built on top of a SAT engine. It is available within the OR-Tools open-source repository - website: https://developers.google.com/optimization - github repository: https://github.com/google/or-Tools It has won multiple gold medals at the MiniZinc challenge: https://www.minizinc.org/challenge.html since its debut in 2017. The CP-SAT solver is architectured around five components: - The base layer is a clause learning SAT solver. - Above the SAT layer sits a Constraint Programming (CP) module with Boolean, integer and interval variables, and standard integer, scheduling and routing constraints. - Alongside the CP solver, a simplex provides a global linear relaxation. Its integration with the CP and SAT layers enable the CP-SAT solver to solve MIP problems with the same techniques as (commercial) MIP solvers: relaxation, cuts, heuristics and duality based techniques. - Both the CP and MIP modules rely on a unified protobuf representation of the model that can serve as a file format, as well as an intermediate representation of the model during all phases of the solve (input format, presolved model, LNS fragment, Local Search). - On top, the search layer implements a robust information-sharing portfolio of specialized workers that offers both good and fast solutions, and superior optimality proving capabilities. This work was presented at the CPAIOR 2020 masterclass. The recording is available on youtube (https://www.youtube.com/watch?v=lmy1ddn4cyw).